Mister Exam

Other calculators

Integral of xln(x)-x+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  (x*log(x) - x + 1) dx
 |                       
/                        
0                        
01((xlog(x)x)+1)dx\int\limits_{0}^{1} \left(\left(x \log{\left(x \right)} - x\right) + 1\right)\, dx
Integral(x*log(x) - x + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=log(x)u = \log{\left(x \right)}.

          Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

          ue2udu\int u e^{2 u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

            1. Let u=2uu = 2 u.

              Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

              eu2du\int \frac{e^{u}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu2\frac{e^{u}}{2}

              Now substitute uu back in:

              e2u2\frac{e^{2 u}}{2}

            So, the result is: e2u4\frac{e^{2 u}}{4}

          Now substitute uu back in:

          x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

        Method #2

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

          Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

          To find v(x)v{\left(x \right)}:

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          x2dx=xdx2\int \frac{x}{2}\, dx = \frac{\int x\, dx}{2}

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x24\frac{x^{2}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      The result is: x2log(x)23x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x2log(x)23x24+x\frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4} + x

  2. Now simplify:

    x(2xlog(x)3x+4)4\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{4}

  3. Add the constant of integration:

    x(2xlog(x)3x+4)4+constant\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{4}+ \mathrm{constant}


The answer is:

x(2xlog(x)3x+4)4+constant\frac{x \left(2 x \log{\left(x \right)} - 3 x + 4\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   2    2       
 |                                 3*x    x *log(x)
 | (x*log(x) - x + 1) dx = C + x - ---- + ---------
 |                                  4         2    
/                                                  
((xlog(x)x)+1)dx=C+x2log(x)23x24+x\int \left(\left(x \log{\left(x \right)} - x\right) + 1\right)\, dx = C + \frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
1/4
14\frac{1}{4}
=
=
1/4
14\frac{1}{4}
1/4
Numerical answer [src]
0.25
0.25

    Use the examples entering the upper and lower limits of integration.