Mister Exam

Other calculators

Integral of xe^(xy) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     x*y   
 |  x*e    dx
 |           
/            
0            
$$\int\limits_{0}^{1} x e^{x y}\, dx$$
Integral(x*E^(x*y), (x, 0, 1))
The answer (Indefinite) [src]
                   //         2                   \                       
                   ||        x                    |                       
                   ||        --          for y = 0|                       
                   ||        2                    |                       
  /                ||                             |     // x    for y = 0\
 |                 ||/ x*y                        |     ||               |
 |    x*y          |||e          2                |     || x*y           |
 | x*e    dx = C - |<|----  for y  != 0           | + x*|
            
$${{\left(x\,y-1\right)\,e^{x\,y}}\over{y^2}}$$
The answer [src]
/               y                                  
|1    (-1 + y)*e                                   
|-- + -----------  for And(y > -oo, y < oo, y != 0)
< 2         2                                      
|y         y                                       
|                                                  
\      1/2                    otherwise            
$${{\left(y-1\right)\,e^{y}}\over{y^2}}+{{1}\over{y^2}}$$
=
=
/               y                                  
|1    (-1 + y)*e                                   
|-- + -----------  for And(y > -oo, y < oo, y != 0)
< 2         2                                      
|y         y                                       
|                                                  
\      1/2                    otherwise            
$$\begin{cases} \frac{\left(y - 1\right) e^{y}}{y^{2}} + \frac{1}{y^{2}} & \text{for}\: y > -\infty \wedge y < \infty \wedge y \neq 0 \\\frac{1}{2} & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.