Integral of xe^(xy) dx
The solution
The answer (Indefinite)
[src]
// 2 \
|| x |
|| -- for y = 0|
|| 2 |
/ || | // x for y = 0\
| ||/ x*y | || |
| x*y |||e 2 | || x*y |
| x*e dx = C - |<|---- for y != 0 | + x*|
y2(xy−1)exy
/ y
|1 (-1 + y)*e
|-- + ----------- for And(y > -oo, y < oo, y != 0)
< 2 2
|y y
|
\ 1/2 otherwise
y2(y−1)ey+y21
=
/ y
|1 (-1 + y)*e
|-- + ----------- for And(y > -oo, y < oo, y != 0)
< 2 2
|y y
|
\ 1/2 otherwise
{y2(y−1)ey+y2121fory>−∞∧y<∞∧y=0otherwise
Use the examples entering the upper and lower limits of integration.