Mister Exam

Integral of cos²xsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     2             
 |  cos (x)*sin(x) dx
 |                   
/                    
0                    
01sin(x)cos2(x)dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx
Detail solution
  1. Let u=cos(x)u = \cos{\left(x \right)}.

    Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

    u2du\int u^{2}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

      So, the result is: u33- \frac{u^{3}}{3}

    Now substitute uu back in:

    cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

  2. Add the constant of integration:

    cos3(x)3+constant- \frac{\cos^{3}{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

cos3(x)3+constant- \frac{\cos^{3}{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            3   
 |    2                    cos (x)
 | cos (x)*sin(x) dx = C - -------
 |                            3   
/                                 
cos3x3-{{\cos ^3x}\over{3}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901.0-1.0
The answer [src]
       3   
1   cos (1)
- - -------
3      3   
13cos313{{1}\over{3}}-{{\cos ^31}\over{3}}
=
=
       3   
1   cos (1)
- - -------
3      3   
cos3(1)3+13- \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{1}{3}
Numerical answer [src]
0.280757131583002
0.280757131583002
The graph
Integral of cos²xsinx dx

    Use the examples entering the upper and lower limits of integration.