Mister Exam

Other calculators

Integral of dx/(x^2+8x+17) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -3                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |   2              
 |  x  + 8*x + 17   
 |                  
/                   
-oo                 
$$\int\limits_{-\infty}^{-3} \frac{1}{\left(x^{2} + 8 x\right) + 17}\, dx$$
Integral(1/(x^2 + 8*x + 17), (x, -oo, -3))
Detail solution
We have the integral:
  /                
 |                 
 |       1         
 | ------------- dx
 |  2              
 | x  + 8*x + 17   
 |                 
/                  
Rewrite the integrand
      1                 1        
------------- = -----------------
 2                /        2    \
x  + 8*x + 17   1*\(-x - 4)  + 1/
or
  /                  
 |                   
 |       1           
 | ------------- dx  
 |  2               =
 | x  + 8*x + 17     
 |                   
/                    
  
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x - 4)  + 1   
 |                 
/                  
In the integral
  /                
 |                 
 |       1         
 | ------------- dx
 |         2       
 | (-x - 4)  + 1   
 |                 
/                  
do replacement
v = -4 - x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                              
 |                               
 |       1                       
 | ------------- dx = atan(4 + x)
 |         2                     
 | (-x - 4)  + 1                 
 |                               
/                                
Solution is:
C + atan(4 + x)
The answer (Indefinite) [src]
  /                                  
 |                                   
 |       1                           
 | ------------- dx = C + atan(4 + x)
 |  2                                
 | x  + 8*x + 17                     
 |                                   
/                                    
$$\int \frac{1}{\left(x^{2} + 8 x\right) + 17}\, dx = C + \operatorname{atan}{\left(x + 4 \right)}$$
The graph
The answer [src]
3*pi
----
 4  
$$\frac{3 \pi}{4}$$
=
=
3*pi
----
 4  
$$\frac{3 \pi}{4}$$
3*pi/4

    Use the examples entering the upper and lower limits of integration.