Mister Exam

Integral of x√(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |      _______   
 |  x*\/ x + 1  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \sqrt{x + 1}\, dx$$
Integral(x*sqrt(x + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                               3/2            5/2
 |     _______          2*(1 + x)      2*(1 + x)   
 | x*\/ x + 1  dx = C - ------------ + ------------
 |                           3              5      
/                                                  
$$\int x \sqrt{x + 1}\, dx = C + \frac{2 \left(x + 1\right)^{\frac{5}{2}}}{5} - \frac{2 \left(x + 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
         ___
4    4*\/ 2 
-- + -------
15      15  
$$\frac{4}{15} + \frac{4 \sqrt{2}}{15}$$
=
=
         ___
4    4*\/ 2 
-- + -------
15      15  
$$\frac{4}{15} + \frac{4 \sqrt{2}}{15}$$
4/15 + 4*sqrt(2)/15
Numerical answer [src]
0.643790283299492
0.643790283299492
The graph
Integral of x√(x+1) dx

    Use the examples entering the upper and lower limits of integration.