Mister Exam

Other calculators

Integral of 1/(x*√(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |         1        
 |  1*----------- dx
 |        _______   
 |    x*\/ x + 1    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \sqrt{x + 1}}\, dx$$
Integral(1/(x*sqrt(x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                               
 |                                                                
 |        1                  /      _______\      /       _______\
 | 1*----------- dx = C - log\1 + \/ 1 + x / + log\-1 + \/ 1 + x /
 |       _______                                                  
 |   x*\/ x + 1                                                   
 |                                                                
/                                                                 
$$\log \left(\sqrt{x+1}-1\right)-\log \left(\sqrt{x+1}+1\right)$$
The answer [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |      _______   
 |  x*\/ 1 + x    
 |                
/                 
0                 
$${\it \%a}$$
=
=
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |      _______   
 |  x*\/ 1 + x    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{x + 1}}\, dx$$
Numerical answer [src]
43.7139933210737
43.7139933210737

    Use the examples entering the upper and lower limits of integration.