Mister Exam

Integral of x√(x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |      _______   
 |  x*\/ x - 1  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \sqrt{x - 1}\, dx$$
Integral(x*sqrt(x - 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                  
 |                                3/2             5/2
 |     _______          2*(-1 + x)      2*(-1 + x)   
 | x*\/ x - 1  dx = C + ------------- + -------------
 |                            3               5      
/                                                    
$$\int x \sqrt{x - 1}\, dx = C + \frac{2 \left(x - 1\right)^{\frac{5}{2}}}{5} + \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
4*I
---
 15
$$\frac{4 i}{15}$$
=
=
4*I
---
 15
$$\frac{4 i}{15}$$
4*i/15
Numerical answer [src]
(0.0 + 0.266666666666667j)
(0.0 + 0.266666666666667j)
The graph
Integral of x√(x-1) dx

    Use the examples entering the upper and lower limits of integration.