Mister Exam

Integral of x*√x-1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                 
  /                 
 |                  
 |  /    ___    \   
 |  \x*\/ x  - 1/ dx
 |                  
/                   
1                   
$$\int\limits_{1}^{2} \left(\sqrt{x} x - 1\right)\, dx$$
Integral(x*sqrt(x) - 1, (x, 1, 2))
The answer (Indefinite) [src]
  /                                 
 |                               5/2
 | /    ___    \              2*x   
 | \x*\/ x  - 1/ dx = C - x + ------
 |                              5   
/                                   
$$\int \left(\sqrt{x} x - 1\right)\, dx = C + \frac{2 x^{\frac{5}{2}}}{5} - x$$
The graph
The answer [src]
          ___
  7   8*\/ 2 
- - + -------
  5      5   
$$- \frac{7}{5} + \frac{8 \sqrt{2}}{5}$$
=
=
          ___
  7   8*\/ 2 
- - + -------
  5      5   
$$- \frac{7}{5} + \frac{8 \sqrt{2}}{5}$$
-7/5 + 8*sqrt(2)/5
Numerical answer [src]
0.862741699796952
0.862741699796952
The graph
Integral of x*√x-1 dx

    Use the examples entering the upper and lower limits of integration.