Mister Exam

Other calculators

Integral of (x^2+y^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 21             
 --             
 10             
  /             
 |              
 |  / 2    3\   
 |  \x  + y / dx
 |              
/               
0               
$$\int\limits_{0}^{\frac{21}{10}} \left(x^{2} + y^{3}\right)\, dx$$
Integral(x^2 + y^3, (x, 0, 21/10))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                     3       
 | / 2    3\          x       3
 | \x  + y / dx = C + -- + x*y 
 |                    3        
/                              
$$\int \left(x^{2} + y^{3}\right)\, dx = C + \frac{x^{3}}{3} + x y^{3}$$
The answer [src]
           3
3087   21*y 
---- + -----
1000     10 
$$\frac{21 y^{3}}{10} + \frac{3087}{1000}$$
=
=
           3
3087   21*y 
---- + -----
1000     10 
$$\frac{21 y^{3}}{10} + \frac{3087}{1000}$$
3087/1000 + 21*y^3/10

    Use the examples entering the upper and lower limits of integration.