Mister Exam

Other calculators


(x^2+2)^2

Derivative of (x^2+2)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2
/ 2    \ 
\x  + 2/ 
(x2+2)2\left(x^{2} + 2\right)^{2}
  /        2\
d |/ 2    \ |
--\\x  + 2/ /
dx           
ddx(x2+2)2\frac{d}{d x} \left(x^{2} + 2\right)^{2}
Detail solution
  1. Let u=x2+2u = x^{2} + 2.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddx(x2+2)\frac{d}{d x} \left(x^{2} + 2\right):

    1. Differentiate x2+2x^{2} + 2 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of the constant 22 is zero.

      The result is: 2x2 x

    The result of the chain rule is:

    2x(2x2+4)2 x \left(2 x^{2} + 4\right)

  4. Now simplify:

    4x(x2+2)4 x \left(x^{2} + 2\right)


The answer is:

4x(x2+2)4 x \left(x^{2} + 2\right)

The graph
02468-8-6-4-2-1010-2000020000
The first derivative [src]
    / 2    \
4*x*\x  + 2/
4x(x2+2)4 x \left(x^{2} + 2\right)
The second derivative [src]
  /       2\
4*\2 + 3*x /
4(3x2+2)4 \cdot \left(3 x^{2} + 2\right)
The third derivative [src]
24*x
24x24 x
The graph
Derivative of (x^2+2)^2