Mister Exam

Other calculators

Integral of x^2+2*x-8 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                  
  /                  
 |                   
 |  / 2          \   
 |  \x  + 2*x - 8/ dx
 |                   
/                    
-2                   
$$\int\limits_{-2}^{2} \left(\left(x^{2} + 2 x\right) - 8\right)\, dx$$
Integral(x^2 + 2*x - 8, (x, -2, 2))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                     3
 | / 2          \           2         x 
 | \x  + 2*x - 8/ dx = C + x  - 8*x + --
 |                                    3 
/                                       
$$\int \left(\left(x^{2} + 2 x\right) - 8\right)\, dx = C + \frac{x^{3}}{3} + x^{2} - 8 x$$
The graph
The answer [src]
-80/3
$$- \frac{80}{3}$$
=
=
-80/3
$$- \frac{80}{3}$$
-80/3
Numerical answer [src]
-26.6666666666667
-26.6666666666667

    Use the examples entering the upper and lower limits of integration.