1 / | | x | ------------ dx | 2 | x + 4*x + 8 | / 0
Integral(x/(x^2 + 4*x + 8), (x, 0, 1))
/ | | x | 1*------------ dx | 2 | x + 4*x + 8 | /
/ 1*2*x + 4 \
|--------------| /-2 \
| 2 | |---|
x \1*x + 4*x + 8/ \ 4 /
------------ = ---------------- + --------------
2 2 2
x + 4*x + 8 / x \
|- - - 1| + 1
\ 2 / / | | x | 1*------------ dx | 2 = | x + 4*x + 8 | /
/
|
/ | 1
| | -------------- dx
| 1*2*x + 4 | 2
| -------------- dx | / x \
| 2 | |- - - 1| + 1
| 1*x + 4*x + 8 | \ 2 /
| |
/ /
-------------------- - --------------------
2 2 /
|
| 1*2*x + 4
| -------------- dx
| 2
| 1*x + 4*x + 8
|
/
--------------------
2 2 u = x + 4*x
/
|
| 1
| ----- du
| 8 + u
|
/ log(8 + u)
----------- = ----------
2 2 /
|
| 1*2*x + 4
| -------------- dx
| 2
| 1*x + 4*x + 8
| / 2 \
/ log\8 + x + 4*x/
-------------------- = -----------------
2 2 /
|
| 1
- | -------------- dx
| 2
| / x \
| |- - - 1| + 1
| \ 2 /
|
/
----------------------
2 x
v = -1 - -
2 /
|
| 1
- | ------ dv
| 2
| 1 + v
|
/ -atan(v)
-------------- = ---------
2 2 /
|
| 1
- | -------------- dx
| 2
| / x \
| |- - - 1| + 1
| \ 2 /
|
/ / x\
---------------------- = -atan|1 + -|
2 \ 2/ / 2 \
log\8 + x + 4*x/ / x\
C + ----------------- - atan|1 + -|
2 \ 2// | / 2 \ | x log\8 + x + 4*x/ / x\ | ------------ dx = C + ----------------- - atan|1 + -| | 2 2 \ 2/ | x + 4*x + 8 | /
log(13) log(8) pi ------- - atan(3/2) - ------ + -- 2 2 4
=
log(13) log(8) pi ------- - atan(3/2) - ------ + -- 2 2 4
Use the examples entering the upper and lower limits of integration.