Mister Exam

Other calculators

Integral of x^2*sin5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2            
 |  x *sin(5*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x^{2} \sin{\left(5 x \right)}\, dx$$
Integral(x^2*sin(5*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                    2                        
 |  2                   2*cos(5*x)   x *cos(5*x)   2*x*sin(5*x)
 | x *sin(5*x) dx = C + ---------- - ----------- + ------------
 |                         125            5             25     
/                                                              
$$\int x^{2} \sin{\left(5 x \right)}\, dx = C - \frac{x^{2} \cos{\left(5 x \right)}}{5} + \frac{2 x \sin{\left(5 x \right)}}{25} + \frac{2 \cos{\left(5 x \right)}}{125}$$
The graph
The answer [src]
   2    23*cos(5)   2*sin(5)
- --- - --------- + --------
  125      125         25   
$$\frac{2 \sin{\left(5 \right)}}{25} - \frac{23 \cos{\left(5 \right)}}{125} - \frac{2}{125}$$
=
=
   2    23*cos(5)   2*sin(5)
- --- - --------- + --------
  125      125         25   
$$\frac{2 \sin{\left(5 \right)}}{25} - \frac{23 \cos{\left(5 \right)}}{125} - \frac{2}{125}$$
-2/125 - 23*cos(5)/125 + 2*sin(5)/25
Numerical answer [src]
-0.144907784098285
-0.144907784098285

    Use the examples entering the upper and lower limits of integration.