Mister Exam

Other calculators


(x^2-1)e^x

Integral of (x^2-1)e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  / 2    \  x   
 |  \x  - 1/*E  dx
 |                
/                 
0                 
01ex(x21)dx\int\limits_{0}^{1} e^{x} \left(x^{2} - 1\right)\, dx
Integral((x^2 - 1)*E^x, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    ex(x21)=x2exexe^{x} \left(x^{2} - 1\right) = x^{2} e^{x} - e^{x}

  2. Integrate term-by-term:

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

      Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

      To find v(x)v{\left(x \right)}:

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      Now evaluate the sub-integral.

    2. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=2xu{\left(x \right)} = 2 x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

      Then du(x)=2\operatorname{du}{\left(x \right)} = 2.

      To find v(x)v{\left(x \right)}:

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      2exdx=2exdx\int 2 e^{x}\, dx = 2 \int e^{x}\, dx

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: 2ex2 e^{x}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (ex)dx=exdx\int \left(- e^{x}\right)\, dx = - \int e^{x}\, dx

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: ex- e^{x}

    The result is: x2ex2xex+exx^{2} e^{x} - 2 x e^{x} + e^{x}

  3. Now simplify:

    (x22x+1)ex\left(x^{2} - 2 x + 1\right) e^{x}

  4. Add the constant of integration:

    (x22x+1)ex+constant\left(x^{2} - 2 x + 1\right) e^{x}+ \mathrm{constant}


The answer is:

(x22x+1)ex+constant\left(x^{2} - 2 x + 1\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                                         
 | / 2    \  x           2  x        x    x
 | \x  - 1/*E  dx = C + x *e  - 2*x*e  + e 
 |                                         
/                                          
ex(x21)dx=C+x2ex2xex+ex\int e^{x} \left(x^{2} - 1\right)\, dx = C + x^{2} e^{x} - 2 x e^{x} + e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
-1
1-1
=
=
-1
1-1
-1
Numerical answer [src]
-1.0
-1.0
The graph
Integral of (x^2-1)e^x dx

    Use the examples entering the upper and lower limits of integration.