Mister Exam

Other calculators

Integral of x^2-2*y dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  / 2      \   
 |  \x  - 2*y/ dy
 |               
/                
0                
01(x22y)dy\int\limits_{0}^{1} \left(x^{2} - 2 y\right)\, dy
Integral(x^2 - 2*y, (y, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      x2dy=x2y\int x^{2}\, dy = x^{2} y

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2y)dy=2ydy\int \left(- 2 y\right)\, dy = - 2 \int y\, dy

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        ydy=y22\int y\, dy = \frac{y^{2}}{2}

      So, the result is: y2- y^{2}

    The result is: x2yy2x^{2} y - y^{2}

  2. Now simplify:

    y(x2y)y \left(x^{2} - y\right)

  3. Add the constant of integration:

    y(x2y)+constanty \left(x^{2} - y\right)+ \mathrm{constant}


The answer is:

y(x2y)+constanty \left(x^{2} - y\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 | / 2      \           2      2
 | \x  - 2*y/ dy = C - y  + y*x 
 |                              
/                               
(x22y)dy=C+x2yy2\int \left(x^{2} - 2 y\right)\, dy = C + x^{2} y - y^{2}
The answer [src]
      2
-1 + x 
x21x^{2} - 1
=
=
      2
-1 + x 
x21x^{2} - 1
-1 + x^2

    Use the examples entering the upper and lower limits of integration.