Mister Exam

Other calculators


(x^2-1)/(x+1)

Integral of (x^2-1)/(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   2       
 |  x  - 1   
 |  ------ dx
 |  x + 1    
 |           
/            
0            
01x21x+1dx\int\limits_{0}^{1} \frac{x^{2} - 1}{x + 1}\, dx
Integral((x^2 - 1)/(x + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x21x+1=x1\frac{x^{2} - 1}{x + 1} = x - 1

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      1. The integral of a constant is the constant times the variable of integration:

        (1)dx=x\int \left(-1\right)\, dx = - x

      The result is: x22x\frac{x^{2}}{2} - x

    Method #2

    1. Rewrite the integrand:

      x21x+1=x2x+11x+1\frac{x^{2} - 1}{x + 1} = \frac{x^{2}}{x + 1} - \frac{1}{x + 1}

    2. Integrate term-by-term:

      1. Rewrite the integrand:

        x2x+1=x1+1x+1\frac{x^{2}}{x + 1} = x - 1 + \frac{1}{x + 1}

      2. Integrate term-by-term:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        1. The integral of a constant is the constant times the variable of integration:

          (1)dx=x\int \left(-1\right)\, dx = - x

        1. Let u=x+1u = x + 1.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+1)\log{\left(x + 1 \right)}

        The result is: x22x+log(x+1)\frac{x^{2}}{2} - x + \log{\left(x + 1 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x+1)dx=1x+1dx\int \left(- \frac{1}{x + 1}\right)\, dx = - \int \frac{1}{x + 1}\, dx

        1. Let u=x+1u = x + 1.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+1)\log{\left(x + 1 \right)}

        So, the result is: log(x+1)- \log{\left(x + 1 \right)}

      The result is: x22xlog(x+1)+log(x+1)\frac{x^{2}}{2} - x - \log{\left(x + 1 \right)} + \log{\left(x + 1 \right)}

  2. Now simplify:

    x(x2)2\frac{x \left(x - 2\right)}{2}

  3. Add the constant of integration:

    x(x2)2+constant\frac{x \left(x - 2\right)}{2}+ \mathrm{constant}


The answer is:

x(x2)2+constant\frac{x \left(x - 2\right)}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |  2               2    
 | x  - 1          x     
 | ------ dx = C + -- - x
 | x + 1           2     
 |                       
/                        
x21x+1dx=C+x22x\int \frac{x^{2} - 1}{x + 1}\, dx = C + \frac{x^{2}}{2} - x
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-1/2
12- \frac{1}{2}
=
=
-1/2
12- \frac{1}{2}
-1/2
Numerical answer [src]
-0.5
-0.5
The graph
Integral of (x^2-1)/(x+1) dx

    Use the examples entering the upper and lower limits of integration.