1 / | | 2 | x | ------ dx | 2 | x + 4 | / 0
Integral(x^2/(x^2 + 4), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), True), (ArccothRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False), (ArctanhRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False)], context=1/(x**2 + 4), symbol=x)
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | 2 | x /x\ | ------ dx = C + x - 2*atan|-| | 2 \2/ | x + 4 | /
1 - 2*atan(1/2)
=
1 - 2*atan(1/2)
1 - 2*atan(1/2)
Use the examples entering the upper and lower limits of integration.