Mister Exam

Other calculators

Derivative of x^2/(x^2+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2  
  x   
------
 2    
x  + 4
$$\frac{x^{2}}{x^{2} + 4}$$
x^2/(x^2 + 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        3           
     2*x       2*x  
- --------- + ------
          2    2    
  / 2    \    x  + 4
  \x  + 4/          
$$- \frac{2 x^{3}}{\left(x^{2} + 4\right)^{2}} + \frac{2 x}{x^{2} + 4}$$
The second derivative [src]
  /                /         2 \\
  |              2 |      4*x  ||
  |             x *|-1 + ------||
  |        2       |          2||
  |     4*x        \     4 + x /|
2*|1 - ------ + ----------------|
  |         2             2     |
  \    4 + x         4 + x      /
---------------------------------
                   2             
              4 + x              
$$\frac{2 \left(\frac{x^{2} \left(\frac{4 x^{2}}{x^{2} + 4} - 1\right)}{x^{2} + 4} - \frac{4 x^{2}}{x^{2} + 4} + 1\right)}{x^{2} + 4}$$
The third derivative [src]
     /                   /         2 \\
     |                 2 |      2*x  ||
     |              2*x *|-1 + ------||
     |         2         |          2||
     |      4*x          \     4 + x /|
12*x*|-2 + ------ - ------------------|
     |          2              2      |
     \     4 + x          4 + x       /
---------------------------------------
                       2               
               /     2\                
               \4 + x /                
$$\frac{12 x \left(- \frac{2 x^{2} \left(\frac{2 x^{2}}{x^{2} + 4} - 1\right)}{x^{2} + 4} + \frac{4 x^{2}}{x^{2} + 4} - 2\right)}{\left(x^{2} + 4\right)^{2}}$$