Mister Exam

Other calculators


x^3/(x^2+5)

Integral of x^3/(x^2+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3     
 |    x      
 |  ------ dx
 |   2       
 |  x  + 5   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x^{3}}{x^{2} + 5}\, dx$$
Integral(x^3/(x^2 + 5), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is when :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 |    3             2        /     2\
 |   x             x    5*log\5 + x /
 | ------ dx = C + -- - -------------
 |  2              2          2      
 | x  + 5                            
 |                                   
/                                    
$$\int \frac{x^{3}}{x^{2} + 5}\, dx = C + \frac{x^{2}}{2} - \frac{5 \log{\left(x^{2} + 5 \right)}}{2}$$
The graph
The answer [src]
1   5*log(6)   5*log(5)
- - -------- + --------
2      2          2    
$$- \frac{5 \log{\left(6 \right)}}{2} + \frac{1}{2} + \frac{5 \log{\left(5 \right)}}{2}$$
=
=
1   5*log(6)   5*log(5)
- - -------- + --------
2      2          2    
$$- \frac{5 \log{\left(6 \right)}}{2} + \frac{1}{2} + \frac{5 \log{\left(5 \right)}}{2}$$
1/2 - 5*log(6)/2 + 5*log(5)/2
Numerical answer [src]
0.0441961080151134
0.0441961080151134
The graph
Integral of x^3/(x^2+5) dx

    Use the examples entering the upper and lower limits of integration.