Mister Exam

Other calculators


(x-1)/x^3

Integral of (x-1)/x^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x - 1   
 |  ----- dx
 |     3    
 |    x     
 |          
/           
0           
01x1x3dx\int\limits_{0}^{1} \frac{x - 1}{x^{3}}\, dx
Integral((x - 1)/x^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x1x3=1x21x3\frac{x - 1}{x^{3}} = \frac{1}{x^{2}} - \frac{1}{x^{3}}

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      1x2dx=1x\int \frac{1}{x^{2}}\, dx = - \frac{1}{x}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1x3)dx=1x3dx\int \left(- \frac{1}{x^{3}}\right)\, dx = - \int \frac{1}{x^{3}}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        1x3dx=12x2\int \frac{1}{x^{3}}\, dx = - \frac{1}{2 x^{2}}

      So, the result is: 12x2\frac{1}{2 x^{2}}

    The result is: 1x+12x2- \frac{1}{x} + \frac{1}{2 x^{2}}

  3. Now simplify:

    12xx2\frac{\frac{1}{2} - x}{x^{2}}

  4. Add the constant of integration:

    12xx2+constant\frac{\frac{1}{2} - x}{x^{2}}+ \mathrm{constant}


The answer is:

12xx2+constant\frac{\frac{1}{2} - x}{x^{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                       
 |                        
 | x - 1           1     1
 | ----- dx = C + ---- - -
 |    3              2   x
 |   x            2*x     
 |                        
/                         
x1x3dx=C1x+12x2\int \frac{x - 1}{x^{3}}\, dx = C - \frac{1}{x} + \frac{1}{2 x^{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-500000000000500000000000
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-9.15365037903492e+37
-9.15365037903492e+37
The graph
Integral of (x-1)/x^3 dx

    Use the examples entering the upper and lower limits of integration.