Mister Exam

Other calculators


x^3/(x^2-4)

Integral of x^3/(x^2-4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3     
 |    x      
 |  ------ dx
 |   2       
 |  x  - 4   
 |           
/            
0            
01x3x24dx\int\limits_{0}^{1} \frac{x^{3}}{x^{2} - 4}\, dx
Integral(x^3/(x^2 - 4), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2u = x^{2}.

      Then let du=2xdxdu = 2 x dx and substitute dudu:

      u2u8du\int \frac{u}{2 u - 8}\, du

      1. Rewrite the integrand:

        u2u8=12+2u4\frac{u}{2 u - 8} = \frac{1}{2} + \frac{2}{u - 4}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          2u4du=21u4du\int \frac{2}{u - 4}\, du = 2 \int \frac{1}{u - 4}\, du

          1. Let u=u4u = u - 4.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u4)\log{\left(u - 4 \right)}

          So, the result is: 2log(u4)2 \log{\left(u - 4 \right)}

        The result is: u2+2log(u4)\frac{u}{2} + 2 \log{\left(u - 4 \right)}

      Now substitute uu back in:

      x22+2log(x24)\frac{x^{2}}{2} + 2 \log{\left(x^{2} - 4 \right)}

    Method #2

    1. Rewrite the integrand:

      x3x24=x+2x+2+2x2\frac{x^{3}}{x^{2} - 4} = x + \frac{2}{x + 2} + \frac{2}{x - 2}

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x+2dx=21x+2dx\int \frac{2}{x + 2}\, dx = 2 \int \frac{1}{x + 2}\, dx

        1. Let u=x+2u = x + 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x+2)\log{\left(x + 2 \right)}

        So, the result is: 2log(x+2)2 \log{\left(x + 2 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x2dx=21x2dx\int \frac{2}{x - 2}\, dx = 2 \int \frac{1}{x - 2}\, dx

        1. Let u=x2u = x - 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x2)\log{\left(x - 2 \right)}

        So, the result is: 2log(x2)2 \log{\left(x - 2 \right)}

      The result is: x22+2log(x2)+2log(x+2)\frac{x^{2}}{2} + 2 \log{\left(x - 2 \right)} + 2 \log{\left(x + 2 \right)}

  2. Add the constant of integration:

    x22+2log(x24)+constant\frac{x^{2}}{2} + 2 \log{\left(x^{2} - 4 \right)}+ \mathrm{constant}


The answer is:

x22+2log(x24)+constant\frac{x^{2}}{2} + 2 \log{\left(x^{2} - 4 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |    3             2                 
 |   x             x         /      2\
 | ------ dx = C + -- + 2*log\-4 + x /
 |  2              2                  
 | x  - 4                             
 |                                    
/                                     
x3x24dx=C+x22+2log(x24)\int \frac{x^{3}}{x^{2} - 4}\, dx = C + \frac{x^{2}}{2} + 2 \log{\left(x^{2} - 4 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
1/2 - 2*log(4) + 2*log(3)
2log(4)+12+2log(3)- 2 \log{\left(4 \right)} + \frac{1}{2} + 2 \log{\left(3 \right)}
=
=
1/2 - 2*log(4) + 2*log(3)
2log(4)+12+2log(3)- 2 \log{\left(4 \right)} + \frac{1}{2} + 2 \log{\left(3 \right)}
1/2 - 2*log(4) + 2*log(3)
Numerical answer [src]
-0.0753641449035619
-0.0753641449035619
The graph
Integral of x^3/(x^2-4) dx

    Use the examples entering the upper and lower limits of integration.