1 / | | 2 | x | ----------- dx | ________ | / 2 | \/ 1 - x | / 0
Integral(x^2/sqrt(1 - x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=x**2/sqrt(1 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | 2 // ________ \ | x || / 2 | | ----------- dx = C + |-1, x < 1)| | / 2 \\ 2 2 / | \/ 1 - x | /
Use the examples entering the upper and lower limits of integration.