Mister Exam

Other calculators


(x^3)/3+(sin5x)/5

Integral of (x^3)/3+(sin5x)/5 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  / 3           \   
 |  |x    sin(5*x)|   
 |  |-- + --------| dx
 |  \3       5    /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(\frac{x^{3}}{3} + \frac{\sin{\left(5 x \right)}}{5}\right)\, dx$$
Integral(x^3/3 + sin(5*x)/5, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 | / 3           \                      4
 | |x    sin(5*x)|          cos(5*x)   x 
 | |-- + --------| dx = C - -------- + --
 | \3       5    /             25      12
 |                                       
/                                        
$${{x^4}\over{12}}-{{\cos \left(5\,x\right)}\over{25}}$$
The graph
The answer [src]
 37   cos(5)
--- - ------
300     25  
$$-{{12\,\cos 5-37}\over{300}}$$
=
=
 37   cos(5)
--- - ------
300     25  
$$- \frac{\cos{\left(5 \right)}}{25} + \frac{37}{300}$$
Numerical answer [src]
0.111986845914804
0.111986845914804
The graph
Integral of (x^3)/3+(sin5x)/5 dx

    Use the examples entering the upper and lower limits of integration.