Mister Exam

Other calculators


e^x/(e^x+2)

Integral of e^x/(e^x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     x     
 |    E      
 |  ------ dx
 |   x       
 |  E  + 2   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{e^{x}}{e^{x} + 2}\, dx$$
Integral(E^x/(E^x + 2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                            
 |    x                       
 |   E                /     x\
 | ------ dx = C + log\2 + E /
 |  x                         
 | E  + 2                     
 |                            
/                             
$$\int \frac{e^{x}}{e^{x} + 2}\, dx = C + \log{\left(e^{x} + 2 \right)}$$
The graph
The answer [src]
-log(3) + log(2 + E)
$$- \log{\left(3 \right)} + \log{\left(2 + e \right)}$$
=
=
-log(3) + log(2 + E)
$$- \log{\left(3 \right)} + \log{\left(2 + e \right)}$$
-log(3) + log(2 + E)
Numerical answer [src]
0.452832425263941
0.452832425263941
The graph
Integral of e^x/(e^x+2) dx

    Use the examples entering the upper and lower limits of integration.