Mister Exam

Other calculators

Integral of ln(x)/(x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  log(x)   
 |  ------ dx
 |     2     
 |    x      
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{x^{2}}\, dx$$
Integral(log(x)/x^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of is when :

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          
 |                           
 | log(x)          1   log(x)
 | ------ dx = C - - - ------
 |    2            x     x   
 |   x                       
 |                           
/                            
$$\int \frac{\log{\left(x \right)}}{x^{2}}\, dx = C - \frac{\log{\left(x \right)}}{x} - \frac{1}{x}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-5.93814806236544e+20
-5.93814806236544e+20

    Use the examples entering the upper and lower limits of integration.