1 / | | n | x dx | / 0
Integral(x^n, (x, 0, 1))
The integral of is when :
Add the constant of integration:
The answer is:
/ // 1 + n \
| ||x |
| n ||------ for n != -1|
| x dx = C + |<1 + n |
| || |
/ ||log(x) otherwise |
\\ /
/ 1 + n | 1 0 |----- - ------ for And(n > -oo, n < oo, n != -1) <1 + n 1 + n | | oo otherwise \
=
/ 1 + n | 1 0 |----- - ------ for And(n > -oo, n < oo, n != -1) <1 + n 1 + n | | oo otherwise \
Piecewise((1/(1 + n) - 0^(1 + n)/(1 + n), (n > -oo)∧(n < oo)∧(Ne(n, -1))), (oo, True))
Use the examples entering the upper and lower limits of integration.