Mister Exam

Other calculators

Integral of x^n dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |   n   
 |  x  dx
 |       
/        
0        
$$\int\limits_{0}^{1} x^{n}\, dx$$
Integral(x^n, (x, 0, 1))
Detail solution
  1. The integral of is when :

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /            // 1 + n             \
 |             ||x                  |
 |  n          ||------  for n != -1|
 | x  dx = C + |<1 + n              |
 |             ||                   |
/              ||log(x)   otherwise |
               \\                   /
$$\int x^{n}\, dx = C + \begin{cases} \frac{x^{n + 1}}{n + 1} & \text{for}\: n \neq -1 \\\log{\left(x \right)} & \text{otherwise} \end{cases}$$
The answer [src]
/         1 + n                                   
|  1     0                                        
|----- - ------  for And(n > -oo, n < oo, n != -1)
<1 + n   1 + n                                    
|                                                 
|      oo                    otherwise            
\                                                 
$$\begin{cases} - \frac{0^{n + 1}}{n + 1} + \frac{1}{n + 1} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq -1 \\\infty & \text{otherwise} \end{cases}$$
=
=
/         1 + n                                   
|  1     0                                        
|----- - ------  for And(n > -oo, n < oo, n != -1)
<1 + n   1 + n                                    
|                                                 
|      oo                    otherwise            
\                                                 
$$\begin{cases} - \frac{0^{n + 1}}{n + 1} + \frac{1}{n + 1} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq -1 \\\infty & \text{otherwise} \end{cases}$$
Piecewise((1/(1 + n) - 0^(1 + n)/(1 + n), (n > -oo)∧(n < oo)∧(Ne(n, -1))), (oo, True))

    Use the examples entering the upper and lower limits of integration.