Integral of (tan(x))^n dx
The solution
1
/
|
| n
| tan (x) dx
|
/
0
$$\int\limits_{0}^{1} \tan^{n}{\left(x \right)}\, dx$$
=
1
/
|
| n
| tan (x) dx
|
/
0
$$\int\limits_{0}^{1} \tan^{n}{\left(x \right)}\, dx$$
Use the examples entering the upper and lower limits of integration.