Mister Exam

Derivative of x^n

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 n
x 
xnx^{n}
x^n
Detail solution
  1. Apply the power rule: xnx^{n} goes to nxnx\frac{n x^{n}}{x}

  2. Now simplify:

    nxn1n x^{n - 1}


The answer is:

nxn1n x^{n - 1}

The first derivative [src]
   n
n*x 
----
 x  
nxnx\frac{n x^{n}}{x}
The second derivative [src]
   n         
n*x *(-1 + n)
-------------
       2     
      x      
nxn(n1)x2\frac{n x^{n} \left(n - 1\right)}{x^{2}}
The third derivative [src]
   n /     2      \
n*x *\2 + n  - 3*n/
-------------------
          3        
         x         
nxn(n23n+2)x3\frac{n x^{n} \left(n^{2} - 3 n + 2\right)}{x^{3}}