1 / | | n -x | x *E dx | / 0
Integral(x^n*E^(-x), (x, 0, 1))
UpperGammaRule(a=-1, e=n, context=E**(-x)*x**n, symbol=x)
Add the constant of integration:
The answer is:
/ | | n -x | x *E dx = C - Gamma(1 + n, x) | /
Gamma(1 + n)*lowergamma(1 + n, 1) n*Gamma(1 + n)*lowergamma(1 + n, 1) --------------------------------- + ----------------------------------- Gamma(2 + n) Gamma(2 + n)
=
Gamma(1 + n)*lowergamma(1 + n, 1) n*Gamma(1 + n)*lowergamma(1 + n, 1) --------------------------------- + ----------------------------------- Gamma(2 + n) Gamma(2 + n)
gamma(1 + n)*lowergamma(1 + n, 1)/gamma(2 + n) + n*gamma(1 + n)*lowergamma(1 + n, 1)/gamma(2 + n)
Use the examples entering the upper and lower limits of integration.