Mister Exam

Other calculators


x^4(x-1)

Integral of x^4(x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   4           
 |  x *(x - 1) dx
 |               
/                
0                
$$\int\limits_{0}^{1} x^{4} \left(x - 1\right)\, dx$$
Integral(x^4*(x - 1*1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                      5    6
 |  4                  x    x 
 | x *(x - 1) dx = C - -- + --
 |                     5    6 
/                             
$${{5\,x^6-6\,x^5}\over{30}}$$
The graph
The answer [src]
-1/30
$$-{{1}\over{30}}$$
=
=
-1/30
$$- \frac{1}{30}$$
Numerical answer [src]
-0.0333333333333333
-0.0333333333333333
The graph
Integral of x^4(x-1) dx

    Use the examples entering the upper and lower limits of integration.