Mister Exam

Other calculators


(x^2+1)e^-x

Integral of (x^2+1)e^-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  / 2    \  -x   
 |  \x  + 1/*E   dx
 |                 
/                  
0                  
01ex(x2+1)dx\int\limits_{0}^{1} e^{- x} \left(x^{2} + 1\right)\, dx
Integral((x^2 + 1)*E^(-x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute dudu:

      (u2eueu)du\int \left(- u^{2} e^{u} - e^{u}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2eu)du=u2eudu\int \left(- u^{2} e^{u}\right)\, du = - \int u^{2} e^{u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          2. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=2uu{\left(u \right)} = 2 u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=2\operatorname{du}{\left(u \right)} = 2.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            2eudu=2eudu\int 2 e^{u}\, du = 2 \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2eu2 e^{u}

          So, the result is: u2eu+2ueu2eu- u^{2} e^{u} + 2 u e^{u} - 2 e^{u}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (eu)du=eudu\int \left(- e^{u}\right)\, du = - \int e^{u}\, du

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        The result is: u2eu+2ueu3eu- u^{2} e^{u} + 2 u e^{u} - 3 e^{u}

      Now substitute uu back in:

      x2ex2xex3ex- x^{2} e^{- x} - 2 x e^{- x} - 3 e^{- x}

    Method #2

    1. Rewrite the integrand:

      ex(x2+1)=x2ex+exe^{- x} \left(x^{2} + 1\right) = x^{2} e^{- x} + e^{- x}

    2. Integrate term-by-term:

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        (u2eu)du\int \left(- u^{2} e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u2eudu=u2eudu\int u^{2} e^{u}\, du = - \int u^{2} e^{u}\, du

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=u2u{\left(u \right)} = u^{2} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=2u\operatorname{du}{\left(u \right)} = 2 u.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          2. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=2uu{\left(u \right)} = 2 u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then du(u)=2\operatorname{du}{\left(u \right)} = 2.

            To find v(u)v{\left(u \right)}:

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now evaluate the sub-integral.

          3. The integral of a constant times a function is the constant times the integral of the function:

            2eudu=2eudu\int 2 e^{u}\, du = 2 \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2eu2 e^{u}

          So, the result is: u2eu+2ueu2eu- u^{2} e^{u} + 2 u e^{u} - 2 e^{u}

        Now substitute uu back in:

        x2ex2xex2ex- x^{2} e^{- x} - 2 x e^{- x} - 2 e^{- x}

      1. Let u=xu = - x.

        Then let du=dxdu = - dx and substitute du- du:

        (eu)du\int \left(- e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        ex- e^{- x}

      The result is: x2ex2xex3ex- x^{2} e^{- x} - 2 x e^{- x} - 3 e^{- x}

  2. Now simplify:

    (x2+2x+3)ex- \left(x^{2} + 2 x + 3\right) e^{- x}

  3. Add the constant of integration:

    (x2+2x+3)ex+constant- \left(x^{2} + 2 x + 3\right) e^{- x}+ \mathrm{constant}


The answer is:

(x2+2x+3)ex+constant- \left(x^{2} + 2 x + 3\right) e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                               
 | / 2    \  -x             -x    2  -x        -x
 | \x  + 1/*E   dx = C - 3*e   - x *e   - 2*x*e  
 |                                               
/                                                
ex(x2+1)dx=Cx2ex2xex3ex\int e^{- x} \left(x^{2} + 1\right)\, dx = C - x^{2} e^{- x} - 2 x e^{- x} - 3 e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
       -1
3 - 6*e  
36e3 - \frac{6}{e}
=
=
       -1
3 - 6*e  
36e3 - \frac{6}{e}
3 - 6*exp(-1)
Numerical answer [src]
0.792723352971346
0.792723352971346
The graph
Integral of (x^2+1)e^-x dx

    Use the examples entering the upper and lower limits of integration.