Integral of (x^2+1)e^-x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=−x.
Then let du=−dx and substitute du:
∫(−u2eu−eu)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2eu)du=−∫u2eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
So, the result is: −u2eu+2ueu−2eu
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−eu)du=−∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −eu
The result is: −u2eu+2ueu−3eu
Now substitute u back in:
−x2e−x−2xe−x−3e−x
Method #2
-
Rewrite the integrand:
e−x(x2+1)=x2e−x+e−x
-
Integrate term-by-term:
-
Let u=−x.
Then let du=−dx and substitute −du:
∫(−u2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2eudu=−∫u2eudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u2 and let dv(u)=eu.
Then du(u)=2u.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=2u and let dv(u)=eu.
Then du(u)=2.
To find v(u):
-
The integral of the exponential function is itself.
∫eudu=eu
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eudu=2∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
So, the result is: −u2eu+2ueu−2eu
Now substitute u back in:
−x2e−x−2xe−x−2e−x
-
Let u=−x.
Then let du=−dx and substitute −du:
∫(−eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −eu
Now substitute u back in:
The result is: −x2e−x−2xe−x−3e−x
-
Now simplify:
−(x2+2x+3)e−x
-
Add the constant of integration:
−(x2+2x+3)e−x+constant
The answer is:
−(x2+2x+3)e−x+constant
The answer (Indefinite)
[src]
/
|
| / 2 \ -x -x 2 -x -x
| \x + 1/*E dx = C - 3*e - x *e - 2*x*e
|
/
∫e−x(x2+1)dx=C−x2e−x−2xe−x−3e−x
The graph
Use the examples entering the upper and lower limits of integration.