Integral of 1/sqrt(1-y^2) dy
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(y > -1) & (y < 1), context=1/sqrt(1 - y**2), symbol=y)
-
Now simplify:
{asin(y)NaNfory>−1∧y<1otherwise
-
Add the constant of integration:
{asin(y)NaNfory>−1∧y<1otherwise+constant
The answer is:
{asin(y)NaNfory>−1∧y<1otherwise+constant
The answer (Indefinite)
[src]
/
|
| 1
| 1*----------- dy = C + ({asin(y) for And(y > -1, y < 1))
| ________
| / 2
| \/ 1 - y
|
/
The graph
Use the examples entering the upper and lower limits of integration.