Mister Exam

Other calculators


1/sqrt(1-y^2)

Integral of 1/sqrt(1-y^2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |         1        
 |  1*----------- dy
 |       ________   
 |      /      2    
 |    \/  1 - y     
 |                  
/                   
0                   
0111y2+1dy\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{- y^{2} + 1}}\, dy
Integral(1/sqrt(1 - y^2), (y, 0, 1))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(y > -1) & (y < 1), context=1/sqrt(1 - y**2), symbol=y)

  1. Now simplify:

    {asin(y)fory>1y<1NaNotherwise\begin{cases} \operatorname{asin}{\left(y \right)} & \text{for}\: y > -1 \wedge y < 1 \\\text{NaN} & \text{otherwise} \end{cases}

  2. Add the constant of integration:

    {asin(y)fory>1y<1NaNotherwise+constant\begin{cases} \operatorname{asin}{\left(y \right)} & \text{for}\: y > -1 \wedge y < 1 \\\text{NaN} & \text{otherwise} \end{cases}+ \mathrm{constant}


The answer is:

{asin(y)fory>1y<1NaNotherwise+constant\begin{cases} \operatorname{asin}{\left(y \right)} & \text{for}\: y > -1 \wedge y < 1 \\\text{NaN} & \text{otherwise} \end{cases}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                         
 |                                                          
 |        1                                                 
 | 1*----------- dy = C + ({asin(y)  for And(y > -1, y < 1))
 |      ________                                            
 |     /      2                                             
 |   \/  1 - y                                              
 |                                                          
/                                                           
arcsiny\arcsin y
The graph
0.001.000.100.200.300.400.500.600.700.800.900100
The answer [src]
pi
--
2 
π2{{\pi}\over{2}}
=
=
pi
--
2 
π2\frac{\pi}{2}
Numerical answer [src]
1.57079632641979
1.57079632641979
The graph
Integral of 1/sqrt(1-y^2) dy

    Use the examples entering the upper and lower limits of integration.