Integral of x^2sin4x dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=sin(4x).
Then du(x)=2x.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−2x and let dv(x)=cos(4x).
Then du(x)=−21.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8sin(4x))dx=−8∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: 32cos(4x)
-
Add the constant of integration:
−4x2cos(4x)+8xsin(4x)+32cos(4x)+constant
The answer is:
−4x2cos(4x)+8xsin(4x)+32cos(4x)+constant
The answer (Indefinite)
[src]
/
| 2
| 2 cos(4*x) x *cos(4*x) x*sin(4*x)
| x *sin(4*x) dx = C + -------- - ----------- + ----------
| 32 4 8
/
∫x2sin(4x)dx=C−4x2cos(4x)+8xsin(4x)+32cos(4x)
The graph
321−64π
=
321−64π
Use the examples entering the upper and lower limits of integration.