Mister Exam

Integral of xsin(kx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  x*sin(k*x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} x \sin{\left(k x \right)}\, dx$$
Integral(x*sin(k*x), (x, 0, 1))
The answer (Indefinite) [src]
                       //            0              for k = 0\                             
                       ||                                    |                             
  /                    || //sin(k*x)            \            |     //    0       for k = 0\
 |                     || ||--------  for k != 0|            |     ||                     |
 | x*sin(k*x) dx = C - |<-|<   k                |            | + x*|<-cos(k*x)            |
 |                     || ||                    |            |     ||----------  otherwise|
/                      || \\   x      otherwise /            |     \\    k                /
                       ||-------------------------  otherwise|                             
                       \\            k                       /                             
$${{\sin \left(k\,x\right)-k\,x\,\cos \left(k\,x\right)}\over{k^2}}$$
The answer [src]
/sin(k)   cos(k)                                  
|------ - ------  for And(k > -oo, k < oo, k != 0)
|   2       k                                     
<  k                                              
|                                                 
|       0                    otherwise            
\                                                 
$${{\sin k-k\,\cos k}\over{k^2}}$$
=
=
/sin(k)   cos(k)                                  
|------ - ------  for And(k > -oo, k < oo, k != 0)
|   2       k                                     
<  k                                              
|                                                 
|       0                    otherwise            
\                                                 
$$\begin{cases} - \frac{\cos{\left(k \right)}}{k} + \frac{\sin{\left(k \right)}}{k^{2}} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\0 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.