1 / | | x*sin(x)*sin(k*x) dx | / 0
Integral((x*sin(x))*sin(k*x), (x, 0, 1))
// 2 2 2 2 2 \
|| sin (x) x *cos (x) x *sin (x) x*cos(x)*sin(x) |
|| - ------- - ---------- - ---------- + --------------- for k = -1|
|| 4 4 4 2 |
|| |
/ || 2 2 2 2 2 |
| || sin (x) x *cos (x) x *sin (x) x*cos(x)*sin(x) |
| x*sin(x)*sin(k*x) dx = C + |< ------- + ---------- + ---------- - --------------- for k = 1 |
| || 4 4 4 2 |
/ || |
|| 2 2 3 |
||sin(x)*sin(k*x) k *sin(x)*sin(k*x) x*cos(x)*sin(k*x) 2*k*cos(x)*cos(k*x) k*x*cos(k*x)*sin(x) x*k *cos(x)*sin(k*x) x*k *cos(k*x)*sin(x) |
||--------------- + ------------------ - ----------------- + ------------------- + ------------------- + -------------------- - -------------------- otherwise |
|| 4 2 4 2 4 2 4 2 4 2 4 2 4 2 |
\\ 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k /
/ 2 2 | sin (1) cos (1) cos(1)*sin(1) | - ------- - ------- + ------------- for k = -1 | 2 4 2 | | 2 2 | sin (1) cos (1) cos(1)*sin(1) < ------- + ------- - ------------- for k = 1 | 2 4 2 | | 2 2 3 | 2*k sin(1)*sin(k) cos(1)*sin(k) k*cos(k)*sin(1) k *cos(1)*sin(k) k *sin(1)*sin(k) k *cos(k)*sin(1) 2*k*cos(1)*cos(k) |- ------------- + ------------- - ------------- + --------------- + ---------------- + ---------------- - ---------------- + ----------------- otherwise | 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 \ 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k
=
/ 2 2 | sin (1) cos (1) cos(1)*sin(1) | - ------- - ------- + ------------- for k = -1 | 2 4 2 | | 2 2 | sin (1) cos (1) cos(1)*sin(1) < ------- + ------- - ------------- for k = 1 | 2 4 2 | | 2 2 3 | 2*k sin(1)*sin(k) cos(1)*sin(k) k*cos(k)*sin(1) k *cos(1)*sin(k) k *sin(1)*sin(k) k *cos(k)*sin(1) 2*k*cos(1)*cos(k) |- ------------- + ------------- - ------------- + --------------- + ---------------- + ---------------- - ---------------- + ----------------- otherwise | 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 \ 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k 1 + k - 2*k
Piecewise((-sin(1)^2/2 - cos(1)^2/4 + cos(1)*sin(1)/2, k = -1), (sin(1)^2/2 + cos(1)^2/4 - cos(1)*sin(1)/2, k = 1), (-2*k/(1 + k^4 - 2*k^2) + sin(1)*sin(k)/(1 + k^4 - 2*k^2) - cos(1)*sin(k)/(1 + k^4 - 2*k^2) + k*cos(k)*sin(1)/(1 + k^4 - 2*k^2) + k^2*cos(1)*sin(k)/(1 + k^4 - 2*k^2) + k^2*sin(1)*sin(k)/(1 + k^4 - 2*k^2) - k^3*cos(k)*sin(1)/(1 + k^4 - 2*k^2) + 2*k*cos(1)*cos(k)/(1 + k^4 - 2*k^2), True))
Use the examples entering the upper and lower limits of integration.