1 / | | x*sin(k*x) dx | / -1
Integral(x*sin(k*x), (x, -1, 1))
// 0 for k = 0\
|| |
/ || //sin(k*x) \ | // 0 for k = 0\
| || ||-------- for k != 0| | || |
| x*sin(k*x) dx = C - |<-|< k | | + x*|<-cos(k*x) |
| || || | | ||---------- otherwise|
/ || \\ x otherwise / | \\ k /
||------------------------- otherwise|
\\ k /
/ 2*cos(k) 2*sin(k) |- -------- + -------- for And(k > -oo, k < oo, k != 0) | k 2 < k | | 0 otherwise \
=
/ 2*cos(k) 2*sin(k) |- -------- + -------- for And(k > -oo, k < oo, k != 0) | k 2 < k | | 0 otherwise \
Piecewise((-2*cos(k)/k + 2*sin(k)/k^2, (k > -oo)∧(k < oo)∧(Ne(k, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.