Mister Exam

Other calculators


(x+2)*e^x

Integral of (x+2)*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           x   
 |  (x + 2)*e  dx
 |               
/                
0                
01(x+2)exdx\int\limits_{0}^{1} \left(x + 2\right) e^{x}\, dx
Integral((x + 2)*E^x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (x+2)ex=xex+2ex\left(x + 2\right) e^{x} = x e^{x} + 2 e^{x}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. The integral of the exponential function is itself.

          exdx=ex\int e^{x}\, dx = e^{x}

        Now evaluate the sub-integral.

      2. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2exdx=2exdx\int 2 e^{x}\, dx = 2 \int e^{x}\, dx

        1. The integral of the exponential function is itself.

          exdx=ex\int e^{x}\, dx = e^{x}

        So, the result is: 2ex2 e^{x}

      The result is: xex+exx e^{x} + e^{x}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x+2u{\left(x \right)} = x + 2 and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      Now evaluate the sub-integral.

    2. The integral of the exponential function is itself.

      exdx=ex\int e^{x}\, dx = e^{x}

  2. Now simplify:

    (x+1)ex\left(x + 1\right) e^{x}

  3. Add the constant of integration:

    (x+1)ex+constant\left(x + 1\right) e^{x}+ \mathrm{constant}


The answer is:

(x+1)ex+constant\left(x + 1\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |          x             x    x
 | (x + 2)*e  dx = C + x*e  + e 
 |                              
/                               
(x1)ex+2ex\left(x-1\right)\,e^{x}+2\,e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
-1 + 2*e
1+2e-1 + 2 e
=
=
-1 + 2*e
1+2e-1 + 2 e
Numerical answer [src]
4.43656365691809
4.43656365691809
The graph
Integral of (x+2)*e^x dx

    Use the examples entering the upper and lower limits of integration.