Mister Exam

Integral of (x+1)(x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (x + 1)*(x - 1) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(x - 1\right) \left(x + 1\right)\, dx$$
Integral((x + 1)*(x - 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              3
 |                              x 
 | (x + 1)*(x - 1) dx = C - x + --
 |                              3 
/                                 
$$\int \left(x - 1\right) \left(x + 1\right)\, dx = C + \frac{x^{3}}{3} - x$$
The graph
The answer [src]
-2/3
$$- \frac{2}{3}$$
=
=
-2/3
$$- \frac{2}{3}$$
-2/3
Numerical answer [src]
-0.666666666666667
-0.666666666666667
The graph
Integral of (x+1)(x-1) dx

    Use the examples entering the upper and lower limits of integration.