Mister Exam

Other calculators


(x+1)*e^(2*x)

Integral of (x+1)*e^(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |           2*x   
 |  (x + 1)*e    dx
 |                 
/                  
0                  
01(x+1)e2xdx\int\limits_{0}^{1} \left(x + 1\right) e^{2 x}\, dx
Integral((x + 1)*E^(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (x+1)e2x=xe2x+e2x\left(x + 1\right) e^{2 x} = x e^{2 x} + e^{2 x}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            eu4du\int \frac{e^{u}}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2x2\frac{e^{2 x}}{2}

          Method #2

          1. Let u=e2xu = e^{2 x}.

            Then let du=2e2xdxdu = 2 e^{2 x} dx and substitute du2\frac{du}{2}:

            14du\int \frac{1}{4}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              12du=1du2\int \frac{1}{2}\, du = \frac{\int 1\, du}{2}

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              So, the result is: u2\frac{u}{2}

            Now substitute uu back in:

            e2x2\frac{e^{2 x}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          eu4du\int \frac{e^{u}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2x2\frac{e^{2 x}}{2}

        So, the result is: e2x4\frac{e^{2 x}}{4}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      The result is: xe2x2+e2x4\frac{x e^{2 x}}{2} + \frac{e^{2 x}}{4}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=x+1u{\left(x \right)} = x + 1 and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: e2x4\frac{e^{2 x}}{4}

    Method #3

    1. Rewrite the integrand:

      (x+1)e2x=xe2x+e2x\left(x + 1\right) e^{2 x} = x e^{2 x} + e^{2 x}

    2. Integrate term-by-term:

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=xu{\left(x \right)} = x and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

        Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

        To find v(x)v{\left(x \right)}:

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          eu4du\int \frac{e^{u}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2x2\frac{e^{2 x}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        e2x2dx=e2xdx2\int \frac{e^{2 x}}{2}\, dx = \frac{\int e^{2 x}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          eu4du\int \frac{e^{u}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu2\frac{e^{u}}{2}

          Now substitute uu back in:

          e2x2\frac{e^{2 x}}{2}

        So, the result is: e2x4\frac{e^{2 x}}{4}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu4du\int \frac{e^{u}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu2du=eudu2\int \frac{e^{u}}{2}\, du = \frac{\int e^{u}\, du}{2}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      The result is: xe2x2+e2x4\frac{x e^{2 x}}{2} + \frac{e^{2 x}}{4}

  2. Now simplify:

    (2x+1)e2x4\frac{\left(2 x + 1\right) e^{2 x}}{4}

  3. Add the constant of integration:

    (2x+1)e2x4+constant\frac{\left(2 x + 1\right) e^{2 x}}{4}+ \mathrm{constant}


The answer is:

(2x+1)e2x4+constant\frac{\left(2 x + 1\right) e^{2 x}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                        2*x      2*x
 |          2*x          e      x*e   
 | (x + 1)*e    dx = C + ---- + ------
 |                        4       2   
/                                     
(2x1)e2x4+e2x2{{\left(2\,x-1\right)\,e^{2\,x}}\over{4}}+{{e^{2\,x}}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90020
The answer [src]
         2
  1   3*e 
- - + ----
  4    4  
3e2414{{3\,e^2}\over{4}}-{{1}\over{4}}
=
=
         2
  1   3*e 
- - + ----
  4    4  
14+3e24- \frac{1}{4} + \frac{3 e^{2}}{4}
Numerical answer [src]
5.29179207419799
5.29179207419799
The graph
Integral of (x+1)*e^(2*x) dx

    Use the examples entering the upper and lower limits of integration.