1 / | | x + 1 | ------ dx | 2 | x + 1 | / 0
Integral((x + 1)/(x^2 + 1), (x, 0, 1))
/ | | x + 1 | ------ dx | 2 | x + 1 | /
/ 2*x \
|------------|
| 2 |
x + 1 \x + 0*x + 1/ 1
------ = -------------- + -------------
2 2 / 2 \
x + 1 1*\(-x) + 1// | | x + 1 | ------ dx | 2 = | x + 1 | /
/
|
| 2*x
| ------------ dx
| 2
| x + 0*x + 1 /
| |
/ | 1
------------------ + | --------- dx
2 | 2
| (-x) + 1
|
/ /
|
| 2*x
| ------------ dx
| 2
| x + 0*x + 1
|
/
------------------
2 2 u = x
/
|
| 1
| ----- du
| 1 + u
|
/ log(1 + u)
----------- = ----------
2 2 /
|
| 2*x
| ------------ dx
| 2
| x + 0*x + 1
| / 2\
/ log\1 + x /
------------------ = -----------
2 2 / | | 1 | --------- dx | 2 | (-x) + 1 | /
v = -x
/ | | 1 | ------ dv = atan(v) | 2 | 1 + v | /
/ | | 1 | --------- dx = atan(x) | 2 | (-x) + 1 | /
/ 2\
log\1 + x /
C + ----------- + atan(x)
2 / | / 2\ | x + 1 log\1 + x / | ------ dx = C + ----------- + atan(x) | 2 2 | x + 1 | /
log(2) pi ------ + -- 2 4
=
log(2) pi ------ + -- 2 4
log(2)/2 + pi/4
Use the examples entering the upper and lower limits of integration.