Mister Exam

Other calculators


(x+1)/(x^2+1)

Integral of (x+1)/(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x + 1    
 |  ------ dx
 |   2       
 |  x  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x + 1}{x^{2} + 1}\, dx$$
Integral((x + 1)/(x^2 + 1), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 | x + 1    
 | ------ dx
 |  2       
 | x  + 1   
 |          
/           
Rewrite the integrand
         /    2*x     \                
         |------------|                
         | 2          |                
x + 1    \x  + 0*x + 1/         1      
------ = -------------- + -------------
 2             2            /    2    \
x  + 1                    1*\(-x)  + 1/
or
  /           
 |            
 | x + 1      
 | ------ dx  
 |  2        =
 | x  + 1     
 |            
/             
  
  /                                 
 |                                  
 |     2*x                          
 | ------------ dx                  
 |  2                               
 | x  + 0*x + 1        /            
 |                    |             
/                     |     1       
------------------ +  | --------- dx
        2             |     2       
                      | (-x)  + 1   
                      |             
                     /              
In the integral
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 1   
 |                
/                 
------------------
        2         
do replacement
     2
u = x 
then
the integral =
  /                     
 |                      
 |   1                  
 | ----- du             
 | 1 + u                
 |                      
/             log(1 + u)
----------- = ----------
     2            2     
do backward replacement
  /                             
 |                              
 |     2*x                      
 | ------------ dx              
 |  2                           
 | x  + 0*x + 1                 
 |                      /     2\
/                    log\1 + x /
------------------ = -----------
        2                 2     
In the integral
  /            
 |             
 |     1       
 | --------- dx
 |     2       
 | (-x)  + 1   
 |             
/              
do replacement
v = -x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                      
 |                       
 |     1                 
 | --------- dx = atan(x)
 |     2                 
 | (-x)  + 1             
 |                       
/                        
Solution is:
       /     2\          
    log\1 + x /          
C + ----------- + atan(x)
         2               
The answer (Indefinite) [src]
  /                                     
 |                    /     2\          
 | x + 1           log\1 + x /          
 | ------ dx = C + ----------- + atan(x)
 |  2                   2               
 | x  + 1                               
 |                                      
/                                       
$$\int \frac{x + 1}{x^{2} + 1}\, dx = C + \frac{\log{\left(x^{2} + 1 \right)}}{2} + \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
=
=
log(2)   pi
------ + --
  2      4 
$$\frac{\log{\left(2 \right)}}{2} + \frac{\pi}{4}$$
log(2)/2 + pi/4
Numerical answer [src]
1.13197175367742
1.13197175367742
The graph
Integral of (x+1)/(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.