Mister Exam

Other calculators

Integral of (x+1)/(x^2-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  x + 1    
 |  ------ dx
 |   2       
 |  x  - 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{x + 1}{x^{2} - 1}\, dx$$
Integral((x + 1)/(x^2 - 1*1), (x, 0, 1))
Detail solution
We have the integral:
  /           
 |            
 |   x + 1    
 | 1*------ dx
 |    2       
 |   x  - 1   
 |            
/             
Rewrite the integrand
         /  1*2*x + 0   \
         |--------------|
         |   2          |
x + 1    \1*x  + 0*x - 1/
------ = ----------------
 2              2        
x  - 1                   
or
  /             
 |              
 |   x + 1      
 | 1*------ dx  
 |    2        =
 |   x  - 1     
 |              
/               
  
  /                 
 |                  
 |   1*2*x + 0      
 | -------------- dx
 |    2             
 | 1*x  + 0*x - 1   
 |                  
/                   
--------------------
         2          
In the integral
  /                 
 |                  
 |   1*2*x + 0      
 | -------------- dx
 |    2             
 | 1*x  + 0*x - 1   
 |                  
/                   
--------------------
         2          
do replacement
     2
u = x 
then
the integral =
  /                       
 |                        
 |   1                    
 | ------ du              
 | -1 + u                 
 |                        
/              log(-1 + u)
------------ = -----------
     2              2     
do backward replacement
  /                                
 |                                 
 |   1*2*x + 0                     
 | -------------- dx               
 |    2                            
 | 1*x  + 0*x - 1                  
 |                        /      2\
/                      log\-1 + x /
-------------------- = ------------
         2                  2      
Solution is:
C + log(-1 + x)
The answer (Indefinite) [src]
  /                           
 |                            
 | x + 1                      
 | ------ dx = C + log(-1 + x)
 |  2                         
 | x  - 1                     
 |                            
/                             
$$\log \left(x-1\right)$$
The answer [src]
-oo - pi*I
$${\it \%a}$$
=
=
-oo - pi*I
$$-\infty - i \pi$$
Numerical answer [src]
-44.0909567862138
-44.0909567862138

    Use the examples entering the upper and lower limits of integration.