Mister Exam

Other calculators

Integral of x(1/2x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2             
  /             
 |              
 |    /x    \   
 |  x*|- - 1| dx
 |    \2    /   
 |              
/               
0               
$$\int\limits_{0}^{2} x \left(\frac{x}{2} - 1\right)\, dx$$
Integral(x*(x/2 - 1), (x, 0, 2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          
 |                     2    3
 |   /x    \          x    x 
 | x*|- - 1| dx = C - -- + --
 |   \2    /          2    6 
 |                           
/                            
$$\int x \left(\frac{x}{2} - 1\right)\, dx = C + \frac{x^{3}}{6} - \frac{x^{2}}{2}$$
The graph
The answer [src]
-2/3
$$- \frac{2}{3}$$
=
=
-2/3
$$- \frac{2}{3}$$
-2/3
Numerical answer [src]
-0.666666666666667
-0.666666666666667

    Use the examples entering the upper and lower limits of integration.