Mister Exam

Other calculators

Integral of x*(y^2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |     2   
 |  x*y  dy
 |         
/          
0          
01xy2dy\int\limits_{0}^{1} x y^{2}\, dy
Integral(x*y^2, (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    xy2dy=xy2dy\int x y^{2}\, dy = x \int y^{2}\, dy

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      y2dy=y33\int y^{2}\, dy = \frac{y^{3}}{3}

    So, the result is: xy33\frac{x y^{3}}{3}

  2. Add the constant of integration:

    xy33+constant\frac{x y^{3}}{3}+ \mathrm{constant}


The answer is:

xy33+constant\frac{x y^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  
 |                  3
 |    2          x*y 
 | x*y  dy = C + ----
 |                3  
/                    
xy2dy=C+xy33\int x y^{2}\, dy = C + \frac{x y^{3}}{3}
The answer [src]
x
-
3
x3\frac{x}{3}
=
=
x
-
3
x3\frac{x}{3}
x/3

    Use the examples entering the upper and lower limits of integration.