Mister Exam

Other calculators

Integral of (2xy^2-2x^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /     2      3\   
 |  \2*x*y  - 2*x / dx
 |                    
/                     
0                     
01(2x3+2xy2)dx\int\limits_{0}^{1} \left(- 2 x^{3} + 2 x y^{2}\right)\, dx
Integral(2*x*y^2 - 2*x^3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2x3)dx=2x3dx\int \left(- 2 x^{3}\right)\, dx = - \int 2 x^{3}\, dx

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: x42\frac{x^{4}}{2}

      So, the result is: x42- \frac{x^{4}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xy2dx=2y2xdx\int 2 x y^{2}\, dx = 2 y^{2} \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2y2x^{2} y^{2}

    The result is: x42+x2y2- \frac{x^{4}}{2} + x^{2} y^{2}

  2. Now simplify:

    x2(x22+y2)x^{2} \left(- \frac{x^{2}}{2} + y^{2}\right)

  3. Add the constant of integration:

    x2(x22+y2)+constantx^{2} \left(- \frac{x^{2}}{2} + y^{2}\right)+ \mathrm{constant}


The answer is:

x2(x22+y2)+constantx^{2} \left(- \frac{x^{2}}{2} + y^{2}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                           4        
 | /     2      3\          x     2  2
 | \2*x*y  - 2*x / dx = C - -- + x *y 
 |                          2         
/                                     
x2y2x42x^2\,y^2-{{x^4}\over{2}}
The answer [src]
  1    2
- - + y 
  2     
2y212{{2\,y^2-1}\over{2}}
=
=
  1    2
- - + y 
  2     
y212y^{2} - \frac{1}{2}

    Use the examples entering the upper and lower limits of integration.