Mister Exam

Other calculators


x*(x^2-1)^3

Integral of x*(x^2-1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |            3   
 |    / 2    \    
 |  x*\x  - 1/  dx
 |                
/                 
0                 
01x(x21)3dx\int\limits_{0}^{1} x \left(x^{2} - 1\right)^{3}\, dx
Integral(x*(x^2 - 1*1)^3, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x21u = x^{2} - 1.

      Then let du=2xdxdu = 2 x dx and substitute du2\frac{du}{2}:

      u34du\int \frac{u^{3}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u32du=u3du2\int \frac{u^{3}}{2}\, du = \frac{\int u^{3}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

        So, the result is: u48\frac{u^{4}}{8}

      Now substitute uu back in:

      (x21)48\frac{\left(x^{2} - 1\right)^{4}}{8}

    Method #2

    1. Rewrite the integrand:

      x(x21)3=x73x5+3x3xx \left(x^{2} - 1\right)^{3} = x^{7} - 3 x^{5} + 3 x^{3} - x

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x7dx=x88\int x^{7}\, dx = \frac{x^{8}}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3x5)dx=3x5dx\int \left(- 3 x^{5}\right)\, dx = - 3 \int x^{5}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

        So, the result is: x62- \frac{x^{6}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x3dx=3x3dx\int 3 x^{3}\, dx = 3 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 3x44\frac{3 x^{4}}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      The result is: x88x62+3x44x22\frac{x^{8}}{8} - \frac{x^{6}}{2} + \frac{3 x^{4}}{4} - \frac{x^{2}}{2}

  2. Now simplify:

    (x21)48\frac{\left(x^{2} - 1\right)^{4}}{8}

  3. Add the constant of integration:

    (x21)48+constant\frac{\left(x^{2} - 1\right)^{4}}{8}+ \mathrm{constant}


The answer is:

(x21)48+constant\frac{\left(x^{2} - 1\right)^{4}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 |           3          / 2    \ 
 |   / 2    \           \x  - 1/ 
 | x*\x  - 1/  dx = C + ---------
 |                          8    
/                                
(x21)48{{\left(x^2-1\right)^4}\over{8}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.25-0.25
The answer [src]
-1/8
18-{{1}\over{8}}
=
=
-1/8
18- \frac{1}{8}
Numerical answer [src]
-0.125
-0.125
The graph
Integral of x*(x^2-1)^3 dx

    Use the examples entering the upper and lower limits of integration.