Integral of x*sin(n*x)*dx dx
The solution
The answer (Indefinite)
[src]
// 0 for n = 0\
|| |
/ || //sin(n*x) \ | // 0 for n = 0\
| || ||-------- for n != 0| | || |
| x*sin(n*x)*1 dx = C - |<-|< n | | + x*|<-cos(n*x) |
| || || | | ||---------- otherwise|
/ || \\ x otherwise / | \\ n /
||------------------------- otherwise|
\\ n /
n2sin(nx)−nxcos(nx)
/sin(n) cos(n)
|------ - ------ for And(n > -oo, n < oo, n != 0)
| 2 n
< n
|
| 0 otherwise
\
n2sinn−ncosn
=
/sin(n) cos(n)
|------ - ------ for And(n > -oo, n < oo, n != 0)
| 2 n
< n
|
| 0 otherwise
\
{−ncos(n)+n2sin(n)0forn>−∞∧n<∞∧n=0otherwise
Use the examples entering the upper and lower limits of integration.