180 / | | x*sin(n*x) dx | / 0
Integral(x*sin(n*x), (x, 0, 180))
// 0 for n = 0\
|| |
/ || //sin(n*x) \ | // 0 for n = 0\
| || ||-------- for n != 0| | || |
| x*sin(n*x) dx = C - |<-|< n | | + x*|<-cos(n*x) |
| || || | | ||---------- otherwise|
/ || \\ x otherwise / | \\ n /
||------------------------- otherwise|
\\ n /
/sin(180*n) 180*cos(180*n) |---------- - -------------- for And(n > -oo, n < oo, n != 0) | 2 n < n | | 0 otherwise \
=
/sin(180*n) 180*cos(180*n) |---------- - -------------- for And(n > -oo, n < oo, n != 0) | 2 n < n | | 0 otherwise \
Piecewise((sin(180*n)/n^2 - 180*cos(180*n)/n, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.