Integral of x*sina+y*sinx dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫xsin(a)dx=sin(a)∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 2x2sin(a)
-
The integral of a constant times a function is the constant times the integral of the function:
∫ysin(x)dx=y∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: −ycos(x)
The result is: 2x2sin(a)−ycos(x)
-
Add the constant of integration:
2x2sin(a)−ycos(x)+constant
The answer is:
2x2sin(a)−ycos(x)+constant
The answer (Indefinite)
[src]
/ 2
| x *sin(a)
| (x*sin(a) + y*sin(x)) dx = C + --------- - y*cos(x)
| 2
/
∫(xsin(a)+ysin(x))dx=C+2x2sin(a)−ycos(x)
sin(a)
y + ------ - y*cos(1)
2
−ycos(1)+y+2sin(a)
=
sin(a)
y + ------ - y*cos(1)
2
−ycos(1)+y+2sin(a)
Use the examples entering the upper and lower limits of integration.