Mister Exam

Other calculators

Integral of x*sina+y*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  (x*sin(a) + y*sin(x)) dx
 |                          
/                           
0                           
01(xsin(a)+ysin(x))dx\int\limits_{0}^{1} \left(x \sin{\left(a \right)} + y \sin{\left(x \right)}\right)\, dx
Integral(x*sin(a) + y*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      xsin(a)dx=sin(a)xdx\int x \sin{\left(a \right)}\, dx = \sin{\left(a \right)} \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2sin(a)2\frac{x^{2} \sin{\left(a \right)}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      ysin(x)dx=ysin(x)dx\int y \sin{\left(x \right)}\, dx = y \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: ycos(x)- y \cos{\left(x \right)}

    The result is: x2sin(a)2ycos(x)\frac{x^{2} \sin{\left(a \right)}}{2} - y \cos{\left(x \right)}

  2. Add the constant of integration:

    x2sin(a)2ycos(x)+constant\frac{x^{2} \sin{\left(a \right)}}{2} - y \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

x2sin(a)2ycos(x)+constant\frac{x^{2} \sin{\left(a \right)}}{2} - y \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                2                  
 |                                x *sin(a)           
 | (x*sin(a) + y*sin(x)) dx = C + --------- - y*cos(x)
 |                                    2               
/                                                     
(xsin(a)+ysin(x))dx=C+x2sin(a)2ycos(x)\int \left(x \sin{\left(a \right)} + y \sin{\left(x \right)}\right)\, dx = C + \frac{x^{2} \sin{\left(a \right)}}{2} - y \cos{\left(x \right)}
The answer [src]
    sin(a)           
y + ------ - y*cos(1)
      2              
ycos(1)+y+sin(a)2- y \cos{\left(1 \right)} + y + \frac{\sin{\left(a \right)}}{2}
=
=
    sin(a)           
y + ------ - y*cos(1)
      2              
ycos(1)+y+sin(a)2- y \cos{\left(1 \right)} + y + \frac{\sin{\left(a \right)}}{2}
y + sin(a)/2 - y*cos(1)

    Use the examples entering the upper and lower limits of integration.