Integral of x*sec^2(x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sec2(x).
Then du(x)=1.
To find v(x):
-
∫sec2(x)dx=tan(x)
Now evaluate the sub-integral.
-
Rewrite the integrand:
tan(x)=cos(x)sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x))
-
Add the constant of integration:
xtan(x)+log(cos(x))+constant
The answer is:
xtan(x)+log(cos(x))+constant
The answer (Indefinite)
[src]
/
|
| 2
| x*sec (x) dx = C + x*tan(x) + log(cos(x))
|
/
2sin2(2x)+2cos2(2x)+4cos(2x)+2(sin2(2x)+cos2(2x)+2cos(2x)+1)log(sin2(2x)+cos2(2x)+2cos(2x)+1)+4xsin(2x)
The graph
2sin22+2cos22+4cos2+2(sin22+cos22+2cos2+1)log(sin22+cos22+2cos2+1)+4sin2−2log4
=
log(cos(1))+tan(1)
Use the examples entering the upper and lower limits of integration.