Mister Exam

Other calculators


x*sec^2(x)

Integral of x*sec^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |  x*sec (x) dx
 |              
/               
0               
01xsec2(x)dx\int\limits_{0}^{1} x \sec^{2}{\left(x \right)}\, dx
Integral(x*sec(x)^2, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sec2(x)\operatorname{dv}{\left(x \right)} = \sec^{2}{\left(x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. sec2(x)dx=tan(x)\int \sec^{2}{\left(x \right)}\, dx = \tan{\left(x \right)}

    Now evaluate the sub-integral.

  2. Rewrite the integrand:

    tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

  3. Let u=cos(x)u = \cos{\left(x \right)}.

    Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

    1udu\int \frac{1}{u}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      So, the result is: log(u)- \log{\left(u \right)}

    Now substitute uu back in:

    log(cos(x))- \log{\left(\cos{\left(x \right)} \right)}

  4. Add the constant of integration:

    xtan(x)+log(cos(x))+constantx \tan{\left(x \right)} + \log{\left(\cos{\left(x \right)} \right)}+ \mathrm{constant}


The answer is:

xtan(x)+log(cos(x))+constantx \tan{\left(x \right)} + \log{\left(\cos{\left(x \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 |      2                                   
 | x*sec (x) dx = C + x*tan(x) + log(cos(x))
 |                                          
/                                           
(sin2(2x)+cos2(2x)+2cos(2x)+1)log(sin2(2x)+cos2(2x)+2cos(2x)+1)+4xsin(2x)2sin2(2x)+2cos2(2x)+4cos(2x)+2{{\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)+2\,\cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2\left(2\,x\right)+ \cos ^2\left(2\,x\right)+2\,\cos \left(2\,x\right)+1\right)+4\,x\, \sin \left(2\,x\right)}\over{2\,\sin ^2\left(2\,x\right)+2\,\cos ^2 \left(2\,x\right)+4\,\cos \left(2\,x\right)+2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
log(cos(1)) + tan(1)
(sin22+cos22+2cos2+1)log(sin22+cos22+2cos2+1)+4sin22sin22+2cos22+4cos2+2log42{{\left(\sin ^22+\cos ^22+2\,\cos 2+1\right)\,\log \left(\sin ^22+ \cos ^22+2\,\cos 2+1\right)+4\,\sin 2}\over{2\,\sin ^22+2\,\cos ^22+ 4\,\cos 2+2}}-{{\log 4}\over{2}}
=
=
log(cos(1)) + tan(1)
log(cos(1))+tan(1)\log{\left(\cos{\left(1 \right)} \right)} + \tan{\left(1 \right)}
Numerical answer [src]
0.941781254268888
0.941781254268888
The graph
Integral of x*sec^2(x) dx

    Use the examples entering the upper and lower limits of integration.