Mister Exam

Integral of 1/(3x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |  3*x + 1   
 |            
/             
0             
0113x+1dx\int\limits_{0}^{1} \frac{1}{3 x + 1}\, dx
Integral(1/(3*x + 1), (x, 0, 1))
Detail solution
  1. Let u=3x+1u = 3 x + 1.

    Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

    13udu\int \frac{1}{3 u}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=1udu3\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{3}

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      So, the result is: log(u)3\frac{\log{\left(u \right)}}{3}

    Now substitute uu back in:

    log(3x+1)3\frac{\log{\left(3 x + 1 \right)}}{3}

  2. Now simplify:

    log(3x+1)3\frac{\log{\left(3 x + 1 \right)}}{3}

  3. Add the constant of integration:

    log(3x+1)3+constant\frac{\log{\left(3 x + 1 \right)}}{3}+ \mathrm{constant}


The answer is:

log(3x+1)3+constant\frac{\log{\left(3 x + 1 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |    1             log(3*x + 1)
 | ------- dx = C + ------------
 | 3*x + 1               3      
 |                              
/                               
13x+1dx=C+log(3x+1)3\int \frac{1}{3 x + 1}\, dx = C + \frac{\log{\left(3 x + 1 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
log(4)
------
  3   
log(4)3\frac{\log{\left(4 \right)}}{3}
=
=
log(4)
------
  3   
log(4)3\frac{\log{\left(4 \right)}}{3}
log(4)/3
Numerical answer [src]
0.462098120373297
0.462098120373297
The graph
Integral of 1/(3x+1) dx

    Use the examples entering the upper and lower limits of integration.